Каскады усиления мощности (УМ). Что такое выходной транзистор? Ток покоя и каскадные усилители Что такое выходной каскад

Искажения выходного каскада усилителя (а именно здесь они весьма существенны, по сравнению с искажениями предварительных каскадов) зависят от оптимального выбора тока покоя (рабочей точки) транзисторов. При уходе от оптимального значения рабочей точки выходной каскад начинает генерировать искажения высоких порядков , которые весьма негативно воспринимаются человеческим слухом и являются одной из причин «транзисторного звучания» усилителя.

Обычно для организации смещения выходного каскада используется генератор напряжения . При относительной простоте схемы он обеспечивает простую настройку рабочей точки выходного каскада. И как-то уж так повелось, что этому узлу большого значения не придают.
Однако...

Однако, для качественного усиления звука второстепенных вещей, увы, нет.

Схема формирования смещения выходного каскада выполняет две функции:

1. обеспечивает задание оптимального тока покоя выходного каскада усилителя (режим АВ). Обычно, чтобы снизить искажения типа «ступенька» выходной каскад переводят в режим «АВ», несмотря на некоторую потерю КПД усилителя. В этом случае схема смещения задает ток покоя выходных транзисторов порядка 70-100мА.

2. обеспечивает термокомпенсацию тока покоя при изменении температуры выходных транзисторов. В режиме «молчания» ток через транзисторы выходного каскада невелик — соответствует току покоя, и нагрев транзисторов несильный. При большой выходной мощности ток через транзисторы возрастает, и температура их значительно увеличивается.

При этом для большинства транзисторов характерен положительный тепловой коэффициент , т.е. при нагревании транзистора ток через него возрастает. В результате возможен лавинный саморазогрев транзистора: растёт ток — растёт температура, а если растёт температура, то растёт и ток.

Схема задания смещения должна снизить ток выходных транзисторов при их нагревании.

Рассмотрим какими свойствами должна обладать схема смещения выходного каскада.

1. Обеспечивать стабильность рабочей точки при внешних возмущениях: нестабильность напряжения питания, изменения температуры окружающей среды и т.п.

2. Обеспечивать необходимую точность термокомпенсации . Для разных каскадов: эмиттерные повторители, каскады Шеклаи и т.д. требования к точности поддержания напряжения смещения разные.

3. Обеспечивать высокую скорость термокомпенсации . При нагревании транзисторов схема должна быстро снизить ток через них, а при остывании также оперативно вернуть его к прежнему значению.

Уже более 30 лет в качестве элемента термокомпенсации применяют генератор напряжения с тепловой обратной связью. Схема его достаточно проста:

Для обеспечения тепловой обратной связи сам транзистор Т1 крепят обычно на радиаторе выходных транзисторов.

Замечу, что иногда встречаются схемы, где регулировка напряжения смещения осуществляется резистором R1 (именно его предлагают сделать подстроечным). Такой вариант не то чтобы неправильный, но довольно опасный . Механический контакт подстроечного резистора весьма ненадёжен. Он может нарушиться и из-за механических причин или из-за окисления.

В случае обрыва цепи движка подстроечного резистора в представленном варианте выходные транзисторы усилителя просто закроются, усилитель перейдёт в режим «В» и катастрофических последствий (кроме роста искажений) это не принесет.

Если подстроечным сделать резистор R1, то в случае обрыва его движка, ток выходных транзисторов возрастёт настолько, насколько сможет. Хорошо, если схема защиты (если в вашем усилителе такая имеется) сможет вовремя ограничить этот ток. Иначе придется менять выходные транзисторы и всё, что успеет сгореть за одно с ними.

Для обеспечения стабильности рабочей точки при различных внешних возмущениях схему смещения запитывают от генератора тока:

Здесь транзистор Т6 — это усилитель напряжения (предвыходной каскад), а на транзисторе Т7 собран источник стабильного тока.

Схема достаточно проста, но она не учитывает «медленные» возмущения из-за изменения температуры: в помещении (летом и зимой температура может существенно отличаться), внутри корпуса усилителя. После длительной работы из-за нагрева выходных транзисторов внутри аппарата температура существенно возрастает, а это приводит к изменению тока не только выходных транзисторов но и первых каскадов выходной двойки/тройки.

Компенсировать такой температурный дрейф можно следующими способами:

1. метод Дугласа Селфа с помощью диода:

2. Метод И. Пугачева. В усилителях относительно большой мощности на выходе применяют каскады-тройки. При этом часто выходные транзисторы устанавливают на радиаторы, предвыходные — с небольшими теплоотводами на печатной плате, первые транзисторы тройки обычно ставят просто на печатной плате без теплоотвода. Рассеиваемая мощность первых транзисторов обычно невелика и здесь требуется скомпенсировать только изменение напряжения Uбэ при изменениях окружающей температуры.

Для этого можно использовать база-эмиттерные переходы аналогичных транзисторов:

Для температурной компенсации транзисторы объединяются попарно (можно склеить задними стенками) Т1 с Т4 и Т3 с Т5. Транзистор Т2 крепится к выходным транзисторам (об этом ниже).

Проблемы точности поддержания рабочей точки и скорости реагирования лучше решать вкупе.

Идеальным вариантом были бы датчики, расположенные непосредственно на кристаллах выходных транзисторов. Тогда и точность измерения температуры, и скорость реагирования (отсутствуют тепловые сопротивления радиаторов и т.п.) были бы предельно возможными.

И на сегодняшний день такое решение есть. Это транзисторно-диодные сборки от компании ThermalTrak:

Здесь в одном корпусе размещены мощный транзистор и диод, который используется как датчик температуры в схеме задания смещения выходного каскада.

Пример схемы усилителя мощности, где использованы такие сборки:

Увеличение по клику.

Сожалению, на просторах «великой Державы» эти сборки найти довольно проблематично, да и по цене они немного «кусаются». Поэтому простому радиолюбителю приходится применять в своих усилителях дедовские методы — использовать в качестве датчика температуры дискретный транзистор. Но и тут нужно подходить с умом!

Почему-то исторически сложилось, что датчик температуры чаще всего крепят на радиаторе между выходными транзисторами:

При этом помимо тепловых сопротивлений «транзистор-радиатор» добавляется весьма приличное тепловое сопротивление участка радиатора между транзистором и термодатчиком. Говорить в этом случае о точности и высокой скорости термокомпенсации как-то не логично.

Как показывает практика и опыты Дугласа Селфа, сильнее всего нагревается и быстрее остывает верхняя поверхность транзисторов (сторона, на которой обычно нанесена маркировка). Поэтому крепить датчик будет логично непосредственно на один из выходных транзисторов:

Если транзисторы имеют изолированные корпуса, то шайба между ними необязательна.

У многих наверняка возник вопрос: к транзистору какого плеча лучше крепить датчик? Однозначно ответить на этот вопрос сложно. Всё зависит от того инвертирующий у вас усилитель или неинвертирующий.

Лучше всего оптимальное крепление датчика определить экспериментальным путём:

1. крепим датчик по «типовому» между транзисторами.

2. включаем какую-нибудь запись хора (хор Турецкого в данном случае не рулит)

3. при воспроизведении хоровых записей транзисторы одного из плеч однозначно нагреются гораздо сильнее транзисторов другого плеча. Если пальцы жечь жалко, то в комплекте даже у самого дешёвого китайского мультиметра есть датчик температуры. Можно воспользоваться им.

4. закрепляем транзистор-термодатчик на наиболее нагревшемся транзисторе.

А в Вашем усилителе схема смещения выходных транзисторов сделана правильно???

Выходной каскад предназначен для отдачи заданной мощности в нагрузку, сопротивление которой тоже задано. Так как мощность поступает от источника питания усилителя через выходной каскад, его КПД должен быть высоким, иначе устройство будет неэкономичным, а габаритные размеры (поверхность охлаждения) раздутыми для отвода выделяющейся в каскаде теплоты. Если у входных каскадов нелинейность транзистора не оказывает влияния ввиду малости усиливаемых сигналов, то у выходных каскадов диапазон изменения сигнала большой, и нелинейность транзистора необходимо учитывать. С этой целью строят так называемую передаточную характеристику. Передаточная характеристика это зависимость выходного тока каскада (тока коллектора или эмиттера) от входного напряжения. В ней учитываются нелинейность входной и выходной характеристик транзистора и изменения напряжения, падающего на самом транзисторе в зависимости от выходного тока.

На семействе статических выходных характеристик транзистора (рис. 2.9, а) по точкам Е к и E к/R н, отложенным на осях координат, проводят нагрузочную прямую. Точки пересечения этой прямой с характеристиками, соответствующими разным токам базы I Б1, ..., I шБi, ..., I Бn, определят ряд значений коллекторного тока I К1, ..., I K1, ..., I Kn. На входной характеристике транзистора (рис. 2.9, о) находят ряд значений напряжения UБЭ1,..., UБЭi, ..., UБЭn, которые необходимо подать для получения соответствующих базовых токов. Наконец, по парам значений I Ki и UБЭi строят передаточную характеристику каскада, которая связывает выходной параметр – ток на выходе каскада – с входным – напряжением сигнала на входе.

Рис. 2.9. Построение передаточной характеристики (в) по выходной (а) и входной (б) характеристикам

Возможны различные варианты выбора рабочего участка этой характеристики. Рассмотрим их подробнее.

Режим А – это режим, при котором исходная рабочая точка р (когда входной сигнал равен нулю) располагается примерно на середине линейного участка характеристики (рис. 2.10). В этом режиме в состоянии покоя через транзистор течет сравнительно большой постоянный ток I Кp, а амплитуда переменной составляющей тока I Кmах меньше или равна этому току. При этом форма выходного сигнала повторяет форму входного и нелинейные искажения минимальны. По КПД каскада составляет лишь 20–30%, потому что полезная мощность определяется только переменной составляющей выходного тока, а потребляемая каскадом мощность – суммой переменной I Кmах и постоянной I Кр составляющих выходного тока.

Рис. 2.10. Режим А работы усилительного каскада

Рис. 2.11.

а – режим В; б – режим

Режим В – это режим, при котором исходная рабочая точка совпадает с началом координат, т.е. в состоянии покоя выходной ток равен нулю (рис. 2.11, а).

При подаче на вход синусоидального сигнала ток в выходной цепи протекает лишь в течение половины периода и имеет форму импульсов. КПД каскада в этом режиме достигает 60–70%, так как постоянная составляющая I к коллекторного тока (определяемая по заштрихованной площади как среднее за период значение тока) значительно меньше, чем в режиме А. Однако форма усиливаемого сигнала слишком искажена.

Режим АВ (рис. 2.11, б) занимает промежуточное положение. Такой режим позволяет уменьшить нелинейные искажения при применении двухтактных выходных каскадов.

Однотактные и двухтактные выходные каскады

Выходные каскады выполняют однотактными и двухтактными. В однотактных каскадах только один мощный усилительный транзистор, который работает как в положительный полупериод синусоиды, так и в отрицательный. В двухтактных каскадах – два мощных транзистора, которые работают по очереди.

Однотактный каскад

Схема однотактного выходного каскада аналогична схеме, изображенной на рис. 2.4. Нагрузка включается вместо резистора R K, а разделительный конденсатор С р2 отсутствует. Однотактный каскад, работающий в режиме А, обеспечивает наименьшие нелинейные искажения, но обладает рядом недостатков: низким КПД; невозможностью применения в режимах В и АВ из-за больших нелинейных искажений в этих режимах. Из-за этих недостатков однотактные каскады применяют только при относительно небольших мощностях нагрузки.

Двухтактный каскад

Он позволяет избавиться от недостатков, присущих однотактному каскаду. Такие каскады выполняют на транзисторах, включенных по схемам с общим эмиттером или общим коллектором.

Рис. 2.12.

Обычно в предварительных каскадах усилителей обеспечивается необходимое усиление входного сигнала по напряжению, а в выходном каскаде происходит усиление по току, мощности и обеспечивается низкое выходное сопротивление. В этом случае часто в качестве выходного каскада используют двухтактный эмиттерный повторитель (рис. 2.12). Входной сигнал проходит через разделительные конденсаторы и поступает на базы транзисторов VT1 и VT2. Эти транзисторы разных типов проводимости, т.е. VT1 – типа р-п-р, a VT2 – типа п-р-п. Транзистор VT1 управляется положительным напряжением, a VT2 – отрицательным. Положительный полупериод синусоиды входного сигнала усиливается транзистором VT1. В это время транзистор VT2 закрыт и ток в нагрузку течет по цепи "корпус – R н эмиттер VT1 – коллектор VT1--Е к". В отрицательный полупериод транзисторы меняются ролями и работает транзистор VT2, a VT1 закрыт. Ток в нагрузке течет по цепи "+Е К – коллектор VT2 – эмиттер VT2 – R H корпус".

Чтобы обеспечить положение рабочей точки транзисторов, необходимо установить в состоянии покоя напряжения смещения на базах транзисторов. Для этого используются цепочки "резистор RБ1 – диод VD1" для транзистора VT1 и "резистор R m диод VD2" для транзистора VT2. Протекающий в них ток обеспечивает необходимое напряжение смещения на база–эмиттерных переходах транзисторов.

Как видно, схему двухтактного эмиттерного повторителя можно разделить на две симметричные части – верхнюю и нижнюю, которые называются плечами каскада. Транзисторы в данном каскаде работают в режиме АВ. Хотя каждое плечо дает большое искажение синусоидального сигнала (только в одном полупериоде), вместе они формируют результирующий ток, имеющий синусоидальную форму. Режим АВ в двухтактном эмиттерном повторителе обеспечивает низкие нелинейные искажения и высокий КПД – около 70%. Недостатком двухтактных каскадов является то, что параметры мощных транзисторов, используемых в разных плечах, должны иметь близкие характеристики.

Транскрипт

1 Лекция 7 Тема: Специальные усилители 1.1 Усилители мощности (выходные каскады) Каскады усиления мощности обычно являются выходными (оконечными) каскадами, к которым подключается внешняя нагрузка, и предназначены для получения в нагрузке требуемой мощности. Энергетические показатели этих каскадов являются весьма существенными и при анализе усилителей им уделяется основное внимание. Каскады усиления мощности отличаются большим разнообразием. Они могут выполняться на биполярных и полевых транзисторах, включенных по схеме ОБ, ОЭ (ОИ) или ОК (ОС). По способу подключения нагрузки усилительные каскады могут быть трансформаторными и бестрансформаторными. Выходные каскады усилителей предназначены для получения в низкоомной нагрузке требуемой мощности сигнала и поэтому их характеризуют рядом энергетических параметров: выходной мощностью, КПД, коэффициентом усиления по мощности и уровнем нелинейных искажений. Для обеспечения высоких энергетических показателей усилителя мощности, амплитуды выходных напряжений и токов, а также выходная мощность усиленного сигнала должны быть близки к соответствующим предельно допустимым параметрам используемого транзистора. По способу подключения нагрузки выходные каскады делят на трансформаторные и бестрансформаторные. Трансформаторные каскады в современных усилительных устройствах практически не применяются. В бестрансформаторных выходных каскадах используют однотипные и разнотипные транзисторы, которые соединены по двухтактной схеме с непосредственным подключением нагрузки. При этом разнотипные транзисторы имеют идентичные параметры и их называют комплементарными. В настоящее время схемы на однотипных транзисторах применяются крайне редко. Основной недостаток таких схем один транзистор включен по схеме ОЭ, а другой по схеме ОК, что требует искусственного выравнивания коэффициентов усиления плеч. Основным требованием, предъявляемым к каскадам усиления мощности, является обеспечение в заданном нагрузочном сопротивлении возможно большей или заданной величины мощности сигнала. Эта мощность должна быть отдана при допустимом уровне нелинейных и частотных искажений, а также при возможно меньшем потреблении мощности от источника питания. Поэтому основными исходными данными при расчете каскада являются: мощность P Н отдаваемая в нагрузку; уровень частотных и нелинейных искажений; рабочая полоса частот (); коэффициент полезного дейст- Н В 1

2 вия каскада. Усилитель мощности обычно является выходным каскадом усилительного устройства. Сопротивление нагрузки усилителя мощности, как правило, не превышает величину нескольких десятков или сотен Ом. Если низкоомную нагрузку, включить непосредственно в выходную цепь транзистора выходного каскада, имеющего обычно большое выходное сопротивление, то мощность сигнала в нагрузке окажется очень малой. В этом случае согласование выходного сопротивления усилительного каскада и сопротивления нагрузки осуществляется с помощью выходного трансформатора. Если нагрузка достаточно высокоомная, то она может быть включена непосредственно в выходную цепь оконечного усилительного каскада Классы усиления в усилителях мощности В зависимости от положения точки покоя на линии нагрузки по постоянному, току различают три основных режима (раннее название класс) работы транзисторов в усилителях мощности: А; В и АВ. Применяют также специфические режимы С; D (близкие к ключевому) и ключевой импульсный режим. В режиме А точку покоя транзистора на выходных характеристиках выбирают так, чтобы рабочая точка при перемещении по линии нагрузки не попала в области искажений формы выходного сигнала. Таким образом, все рассмотренные выше усилительные каскады работают в режиме А. Энергетические параметры усилителя мощности определяют из графических построений: мощность в коллекторной цепи каскада ОЭ: Р, 5 U I ; К ВЫХ m К m мощность, потребляемую от источника питания: Р EК I КП; КПД коллекторной цепи: Р U ВЫХ m I К К m, 5. Р EК I КП Как следует из формул при максимальных амплитудах напряжения и тока (U ВЫХ m EК и U К m I КП) КПД транзисторного усилителя мощности, работающего в режиме А, не превышает 5 %. В режиме класса А выбор точки покоя производят так, чтобы рабочая точка при движении по линии нагрузки не заходила в нелинейную начальную область коллекторных характеристик и в область отсечки коллекторного тока, т. е. в области искажений выходного сигнала. Иными словами, все рассмотренные каскады работают в режиме усиления класса А. Режим класса А используется в так называемых однотактных каскадах усиления мощности. Каскады усиления мощности класса А обеспечивают наименьшие нелинейные искажения выходного сигнала, но обладают минимальным КПД 2

3 Они нашли применение при мощности в нагрузке не более нескольких десятков милливатт. В режиме класса В точка покоя располагается в крайней правой части линии нагрузки каскада по постоянному току. Режиму покоя соответствует напряжение U БЭ. При наличии входного сигнала ток коллектора транзистора протекает только в течение одного полупериода, а в течение другого транзистор работает в режиме отсечки тока. В режиме класса В усилитель мощности выполняют по двухтактной схеме с использованием двух транзисторов. Каждый из транзисторов служит для усиления соответствующей полуволны входного сигнала. Выходной каскад при этом обладает более высоким КПД и применяется на более высокие мощности, чем однотактный. Режим класса АВ является промежуточным между режимами классов А и В. Он позволяет существенно уменьшить нелинейные искажения выходного сигнала, сильно проявляющиеся в режиме класса В вследствие нелинейности начального участка входной характеристики транзисторов. Это достигается некоторым смещением точки покоя вверх. Каскады усиления мощности рассматриваются на биполярных транзисторах, включенных преимущественно по схеме ОЭ. На полевых транзисторах эти каскады выполняются аналогично. 1.3 Бестрансформаторный усилитель мощности на комплементарных транзисторах К входу бестрансформаторного выходного каскада на комплементарных транзисторах (рисунок 1, а)) подводится однофазное усиливаемое напряжение. Оба транзистора задействованы по схеме эмиттерного повторителя и обычно запитываются от двух разнополярных одинаковых источников питания ЕК1 ЕК 2. Нагрузка в усилительном каскаде подключена к общей точке соединения эмиттеров транзисторов. T 1 T 2 i К1 R Н u ВЫХ i К 2 Е К 1 Е К 2 i К1 i К 2 u ВЫХ 2 3 t t t t 3

4 а) в) Рисунок 1 Бестрансформаторный усилитель мощности на комплементарных транзисторах: а) схема; б) временные диаграммы токов и напряжений К входу бестрансформаторного выходного каскада на комплементарных транзисторах (рисунок 1, а)) подводится однофазное усиливаемое напряжение. Оба транзистора задействованы по схеме эмиттерного повторителя и обычно запитываются от двух разнополярных одинаковых источников питания ЕК1 ЕК 2. Нагрузка в усилительном каскаде подключена к общей точке соединения эмиттеров транзисторов. С помощью временных диаграмм токов и напряжений (рисунок 1, б)) рассмотрим принцип действия бестрансформаторного выходного каскада. Транзисторы в схеме работают попеременно в так называемом режиме В. Например, на угловом интервале при положительной полуволне входного гармонического напряжения открывается транзистор Т 1 (n р n типа), пропуская в нагрузку импульс коллекторного тока i К1. При этом на нагрузке выделяется положительная полуволна выходного напряжения u ВЫХ. На интервале 2, когда на вход каскада поступает отрицательная полуволна входного напряжения, напряжения, открывается транзистор Т 2 (р n р типа) и через нагрузку протекает импульс тока i К 2, создавая на ней отрицательную полуволну выходного усиленного напряжения u ВЫХ. Усилительный каскад мощности рассчитывают графоаналитическим методом, используя статические характеристики любого транзистора, например Т 1. КПД коллекторной цепи возрастает с увеличением амплитуды выходного напряжения и при значениях U Кm ЕК достигает предельного значения 78,5 %. Так как оба транзистора включены по схеме эмиттерного повторителя (схему часто называют двухтактным эмиттерным повторителем), то значительно упрощается согласование выходного сопротивления усилителя с низкоомной нагрузкой. Однако в этом случае выходное напряжение не превышает входное, и усиление мощности обеспечивается только за счет усиления тока. Основной недостаток двухтактных усилителей мощности, работающих в режиме В, нелинейные искажения выходного сигнала из-за нелинейности начальных участков входных характеристик транзисторов. Объединенная входная характеристика двух транзисторов при этом имеет излом вблизи нуля (рисунок 2, а)). Как видно из диаграмм, эта нелинейность искажает базовые токи i Б1 и i Б 2 вследствие чего искажаются формы коллекторных токов транзисторов и выходного напряжения. Устраняют этот недостаток введени- 4

5 ем транзисторов в промежуточный режим АВ (рисунок 2, б)). Это достигается подачей на их базы небольших отрицательных напряжений смещения, равных напряжению отпирания. Обычно источником базового смещения служат диоды, стабилитроны или транзисторы в диодном включении. I Б I Б i Б1 i Б1 u БЭ i t Б 2 u БЭ i Б 2 t t t а) б) Рисунок 2 Диаграммы работы двух транзисторов: а) в режиме В; б) в режиме АВ 1.4 Избирательные усилители Избирательные усилители предназначены для усиления узкополосных сигналов. Как правило, отношение граничных частот рабочей полосы избирательного усилителя не превышает f / f 1, 11, 5. Их АЧХ должна иметь достаточно резкие, близкие к прямоугольным, спады на границах полосы пропускания. По используемому частотному диапазону избирательные усилители делятся на два класса резонансные и с частотно-зависимой ОС. В одной из простейших схем транзисторного резонансного усилителя с на биполярном транзисторе с общим эмиттером нагрузкой коллекторной цепи является параллельный колебательный LC -контур (рисунок 3). Связь с последующим усилительным каскадом или нагрузкой чаще всего осуществляется через разделительный конденсатор. Может также использоваться и высокочастотная трансформаторная связь. Коэффициент усиления резонансного каскада с ОЭ определяется по формуле К U h21r / h11, где R резонансное сопротивление контура, которое заменяет сопротивление нагрузки R КН. Назначение элементов в схеме усилительного каскада рисунка 3 такое В Н 5

6 же, как и в схеме усилительного каскада на биполярном транзисторе, включенного по схеме с общим эмиттером. В каскаде для улучшения выходных характеристик используется отрицательная последовательная обратная связь по постоянному и по переменному току, которая задается резисторами R 1, R 2, R Э. Для устранения отрицательной последовательной обратной связи по переменному току, резистор R Э, шунтируют конденсатором большой емкости С Э. Конденсаторы С Р1 и С Р2 разделительные, разделяют переменные и постоянные составляющие напряжений в схеме. Резисторы R 1 и R 2 называют резисторами базового смещения. С помощью их падают смещение по напряжению на вход активного элемента, в частности транзистора Т. Резонансные усилители применяются на промежуточных и высоких частотах (свыше сотен кгц). Они выполняются обычно на интегральных микросхемах, которые содержат все элементы принципиальной схемы, кроме колебательного контура (на сравнительно низких частотах). В диапазоне частот до нескольких десятков килогерц резонансные LСконтуры не используют из-за больших габаритов конденсаторов и катушек индуктивностей. Поэтому на достаточно низких частотах применяют избирательные усилители с частотно-зависимой ОС, состоящей из RС-цепей. R 1 L C C Р2 Е К C Р1 T u ВЫХ R Н R 2 R Э C Э Рисунок 3 Избирательный усилитель 1.5 Фазоинверсный каскад Фазоинверсные каскады являются предоконечными каскадами усилителя, если оконечный каскад является двухтактным усилителем мощности. Фазоинверсный каскад должен обеспечивать на входе двухтактного усилителя мощности два одинаковых напряжения, сдвинутых по фазе на 18. Наиболее просто осуществить инверсию с помощью каскада с трансформаторным выходом. Вторичная обмотка выполняется с выводом средней 6

7 точки (рисунок 4). Расчет такого каскада не отличается от расчета трансформаторного каскада усилителя мощности, работающего в режиме А. Нагрузкой плеча вторичной обмотки является входное сопротивление одного плеча двухтактного усилителя мощности, а коэффициент трансформации определяется как отношение числа витков половины вторичной обмотки к числу первичной. Е К Тр u вых 1 R 1 u вых 2 C р1 T R Г е Г ~ u вх R 2 R Э C Э Рисунок 4 Схема фазоинверсного каскада с трансформаторным выходом Основными недостатками трансформаторного инверсного каскада является большие вес, габариты и стоимость, а также наличие дополнительных нелинейных искажений. Поэтому часто между предоконечным и оконечным каскадами помещают так называемый фазоинверсный каскад с разделенной нагрузкой. Фазоинверсный каскад (каскад с разделенной нагрузкой) предназначен для получения двух выходных сигналов, имеющих сдвиг по фазе в 18. Схема фазоинверсного каскада приведена на рисунке 4. Она получается из схемы ОЭ при отключении конденсатора С Э и подключении второй нагрузки R Н 2 через C р3 к R Э. Выходные сигналы снимаются с коллектора и эмиттера транзистора. Сигнал u ВЫХ 2, снимаемый с эмиттера, совпадает по фазе с входным сигналом (рисунок 5), а сигнал u, снимаемый с коллектора (рисунок 5), находится с ним в противофазе. ВЫХ 1 7

8 Е К R 1 R К C р2 C р1 T R Г C р3 R Н 1 u вых 1 е Г ~ u вх R 2 R Э R Н 2 u вых 2 Рисунок 2.5 Схема фазоинверсного каскада 8


Лекция 9 Тема 9 Выходные каскады 1.1 Усилители мощности (выходные каскады) Каскады усиления мощности обычно являются выходными (оконечными) каскадами, к которым подключается внешняя нагрузка, и предназначены

Лекция 8 Тема 8 Специальные усилители Усилители постоянного тока Усилителями постоянного тока (УПТ) или усилителями медленно изменяющихся сигналов называются усилители, которые способны усиливать электрические

Электроника и МПТ Усилители мощности (УПТ) Усилитель мощности усилительный каскад, предназначенный для передачи в нагрузку заданной либо максимально возможной мощности при максимально возможном КПД и минимальных

ТЕМА 7 Температурная стабилизация При повышении температуры окружающей среды ток транзистора увеличивается и его характеристики смещаются вверх (рис. 1). Рис.1 Эмиттерная стабилизация. Заключается в использовании

Основы схемотехники ОСНОВЫ СХЕМОТЕХНИКИ...1 1. ОСНОВНЫЕ ПОЛОЖЕНИЯ...1 2. УСИЛЕНИЕ СЛАБЫХ СИГНАЛОВ...6 3. УСИЛЕНИЕ СИЛЬНЫХ СИГНАЛОВ...14 4. ОСНОВЫ МИКРОСХЕМОТЕХНИКИ УСИЛИТЕЛЕЙ...18 1. Основные положения

Лекция 7 Тема 7 Предварительные усилители, их принципиальные и эквивалентные схемы Динамические характеристики усилительного элемента В реальных цепях к выходу усилительных (активных) элементов обычно

Лекция 6 Тема Усилительные каскады на биполярных транзисторах 1.1 Питание усилителей. Подача смещения на вход активного элемента Положение начальной рабочей точки определяется полярностью и значением напряжения

Лекция 5 Тема 5 Обратная связь в усилителях Обратной связью () называют передачу части энергии усиливаемого сигнала из выходной цепи усилителя во входную. На рисунке 4 показана структурная схема усилителя

6.3. ДВУХТАКТНЫЕ УСИЛИТЕЛИ МОЩНОСТИ Двухтактные УМ могут быть трансформаторными и бестрансформаторными. Двухтактный трансформаторный УМ представляет собой два однотактных каскада с общими цепями нулевого

Глава 5. УСИЛИТЕЛИ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ 5.1. ПРИНЦИП УСИЛЕНИЯ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ Назначение и классификация усилителей. Усилители переменного напряжения являются наиболее распространенным типом электронных

Лекция 6 Тема 6 Температурная стабилизация усилительных элементов Динамические характеристики усилительного элемента В реальных цепях к выходу усилительных (активных) элементов обычно подключают нагрузку

ТЕМА 6 ЭЛЕКТРОННЫЕ УСИЛИТЕЛИ. Электронный усилитель - устройство, преобразующее маломощный электрический сигнал на входе в сигнал большей мощности на выходе с минимальными искажениями формы. По функциональному

Глава 4. Режимы работы усилительных элементов 4.1 Режим А Этот режим характеризуется тем, что точка покоя выбирается в средней используемой для работы части нагрузочной ВАХ (нагрузочной прямой) усилительного

Нижегородский государственный университет имени Н. И. Лобачевского Радиофизический факультет Отчет по лабораторной работе 5 Апериодический усилитель Выполнили студенты 430 группы Нижний Новгород, 2018

Основы функционирования преобразовательной электронной техники Выпрямители и инверторы ВЫПРЯМИТЕЛИ НА ДИОДАХ Показатели выпрямленного напряжения во многом определяются как схемой выпрямления, так и используемыми

Лекция 4 Тема 4 Основные показатели и характеристики усилителей Основные определения Устройства, с помощью которых путем затраты небольшого количества электрической энергии управляют энергией существенно

Усилители УСИЛИТЕЛИ С ОБРАТНОЙ СВЯЗЬЮ Обратная связь находит широкое использование в разнообразных устройствах полупроводниковой электроники. В усилителях введение обратной связи призвано улучшить ряд

Лекция 8 Тема: Интегральные усилители 1 Усилители постоянного тока Усилителями постоянного тока (УПТ) или усилителями медленно изменяющихся сигналов называются усилители, которые способны усиливать электрические

Лекция 8. Усилители мощности Обратные связи в усилительных каскадах. Каскодные схемы. План 1. Введение. 2. Усилители мощности 3. Обратные связи в усилительных каскадах 4. Каскодные схемы. 1. Введение.

Генераторы Среди генераторных устройств следует различать генераторы синусоидальных (гармонических) колебаний и генераторы прямоугольных колебаний, или сигналов прямоугольной формы (генераторы импульсов).

ЛЕКЦИЯ 13 БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ Динамический и ключевой режимы работы биполярного транзистора План занятия: 1. Динамический режим работы транзистора 2. Ключевой режим работы транзистор 3. Динамические

ЭЛЕКТРОННЫЙ УСИЛИТЕЛЬ Oleg Stukach TP, 30 Lenin Avenue, Tomsk, 634050, Russia E-mail: [email protected] ЭЛЕКТРОННЫЕ УСИЛИТЕЛИ Общая схема усилителя Энергетические характеристики Частотные характеристики Обратная

280 Лекция 27 СХЕМОТЕХНИКА ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ План 1. Введение. 2. Операционные усилители на биполярных транзисторах. 3. Операционные усилители на МОП-транзисторах. 4. Выводы. 1. Введение Операционный

Лабораторная работа Усилители на биполярных транзисторах («УБТ»). Цель работы. Изучение принципов работы, исследование амплитудных и частотных характеристик и параметров усилителей на основе биполярных

3.Транзисторные усилительные каскады (расчет по переменному току) Введение Приведенные ниже задачи связаны с расчетом параметров усилительных каскадов, схемы которых рассчитаны по постоянному току в предыдущей

1 Лекция 7. УСИЛИТЕЛЬНЫЕ КАСКАДЫ НА ПОЛЕВЫХ ТРАНЗИСТОРАХ. СОГЛАСУЮЩИЕ СВОЙСТВА УСИЛИТЕЛЬНЫХ КАСКАДОВ НА БИ- ПОЛЯРНЫХ И ПОЛЕВЫХ ТРАНЗИСТОРАХ План 1. Введение. 2. Усилительные каскады на полевых транзисторах.

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Саратовский государственный технический университет ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ КАСКАДА УСИЛИТЕЛЯ НАПРЯЖЕНИЯ НИЗКОЙ

5.3. УСИЛИТЕЛЬНЫЕ КАСКАДЫ НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ В усилителе на БТ транзистор должен работать в активном режиме, при котором эмиттерный переход смещен в прямом направлении, а коллекторный в обратном.

ТЕСТЫ по дисциплине «Основы радиоэлектроники» Для студентов специальности -3 4 Физика (по направлениям) -3 4-2 Физика (производственная деятельность) Какое из определений сигналов приведено не верно? Электрические

Принцип действия усилительного каскада на биполярном транзисторе Принцип построения усилительных каскадов Электроника Базовым звеном любого усилителя является усилительный каскад (УК). Несмотря на разнообразие

Блок 3 Задание 1. 1. Для заданной схемы выпрямителя определить для режима холостого хода изобразить схему выпрямителя и осциллограммы напряжений на: 1 напряжения на вторичной обмотке трансформатора; 2

Лекция 5 Тема: Усилительные устройства Основные определения Устройства, с помощью которых путем затраты небольшого количества электрической энергии управляют энергией существенно большей, называют усилителями.

Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный университет имени Франциска корины» ОНОВЫ РАДИОЭЛЕКТРОНИКИ ПРОВЕРОЧНЫЕ ТЕТЫ -3 4 Физика (по направлениям)

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Факультет: РФФ Группа: 3091/2 Бригада: 3 Студенты: Нарыков А. Егоров П. Ефремов Д. Преподаватель: Нечаев Д.А. Рабочий протокол и отчёт по

Лекция 10 Тема 10 Операционные усилители Операционным усилителем (ОУ) называют усилитель электрических сигналов, предназначенный для выполнения различных операций над аналоговыми и импульсными величинами

Лекция 11 Тема: Аналоговые интегральные микросхемы (Продолжение). 1) Операционные усилители. 2) Параметры ОУ. 3) Схемотехника ОУ. ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ Операционными усилителями (ОУ) называют усилители

Лабораторная работа # 2 (19) Исследование характеристик биполярного транзистора и усилителя на биполярном транзисторе. Цель работы: Исследование вольтамперных характеристик биполярного транзистора и усилителя

12.2. СИММЕТРИЧНЫЙ ТРИГГЕР НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ С КОЛЛЕКТОРНО-БАЗОВЫМИ СВЯЗЯМИ Установление исходного состояния. Принципиальная схема симметричного транзисторного триггера с коллекторно-базовыми

МОДУЛЬ 3. УСИЛИТЕЛЬНЫЕ УСТРОЙСТВА И ГЕНЕРАТОРЫ В результате изучения модуля студенты должны: знать принципы построения, характеристики и параметры различных типов усилителей и генераторов гармонических

Лекция 11 Тема: Импульсные устройства Импульсный режим работы усилителя Импульсному (ключевому) режиму работы транзистора соответствует два крайних состояния: транзистор либо заперт, или полностью открыт.

ТЕМА 9 ГЕНЕРАЦИЯ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ Генераторы - электронные устройства создающие электрические колебания определенной амплитуды, частоты и формы Энергия генерируемых колебаний появляется в результате

Лабораторная работа 2 Исследование усилительных каскадов на биполярных транзисторах Цель работы Изучение работы усилительных каскадов на биполярных транзисторах, определение основных параметров и их расчет

5.12. ИНТЕГРАЛЬНЫЕ УСИЛИТЕЛИ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ Усилители низкой частоты. УНЧ в интегральном исполнении это, как правило, апериодические усилители, охваченные общей (по постоянному и переменному току)

ЗАДАНИЕ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНО-КУРСОВОЙ РАБОТЫ ГРАФОАНАЛИТИЧЕСКИЙ АНАЛИЗ УСИЛИТЕЛЬНОГО КАСКАДА НА БИПОЛЯРНОМ ТРАНЗИСТОРЕ 1 Цель и задачи контрольно-курсовой работы Изучение структуры,

Усилители постоянного тока. Операционные усилители (ОУ). Проблема дрейфов: в усилителях переменного тока разделение каскадов емкостями или трансформаторами, применение реактивных нагрузок (дроссели и

2. ПРИЦИПЫ ПОСТРОЕИЯ УСИЛИТЕЛЬЫХ ЗВЕЬЕВ ААЛИЗ РАБОТЫ ТИПОВЫХ УСИЛИТЕЛЬЫХ ЗВЕЬЕВ В РЕЖИМЕ МАЛОГО СИГАЛА 2.. Усилительное звено и его обобщенная схема. Малосигнальные параметры биполярных и полевых транзисторов,

0. Измерения импульсных сигналов. Необходимость измерения параметров импульсных сигналов возникает, когда требуется получить визуальную оценку сигнала в виде осциллограмм или показаний измерительных приборов,

Лекция Тема олебательные системы Выделение полезного сигнала из смеси различных побочных сигналов и шумов осуществляется частотно-избирательными линейными цепями, которые строятся на основе колебательных

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ 1 ЦЕПИ СМЕЩЕНИЯ, ТЕМПЕРАТУРНОЙ СТАБИЛИЗАЦИИ, РАБОТА КАСКАДА. Целью работы является изучение процессов, происходящих в усилительном каскаде, на примере схемы с общим эмиттером.

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ДЕПАРТАМЕНТ КАДРОВОЙ ПОЛИТИКИ И ОБРАЗОВАНИЯ ЧЕЛЯБИНСКИЙ ГОСУДАРСТВЕННЫЙ АГРОИНЖЕНЕРНЫЙ УНИВЕРСИТЕТ Кафедра автоматизации сельскохозяйственного производства

Глава 5. Дифференциальные усилители 5. Дифференциальные усилители Дифференциальный усилитель это симметричный усилитель с двумя входами и двумя выходами, использующийся для усиления разности напряжений

МОДУЛЯТОРЫ АМПЛИТУДЫ СИГНАЛОВ МОЩНОСТЬЮ 10...100 ВТ ДИАПАЗОНА 10...450 МГЦ (Электросвязь. 2007. 12. С. 46 48) Александр Титов 634034, Россия, г. Томск, ул. Учебная, 50, кв. 17. Тел. (382-2) 55-98-17, E-mail:

ЛАБОРАТОРНАЯ РАБОТА Амплитудный модулятор Цель работы: исследовать способ получения амплитудно-модулированного сигнала с помощью полупроводникового диода. Управление амплитудой высокочастотных колебаний

84 Лекция 9 СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ План 1. Введение 2. Параметрические стабилизаторы 3. Компенсационные стабилизаторы 4. Интегральные стабилизаторы напряжения 5. Выводы 1. Введение Для работы электронных

10.2. ЭЛЕКТРОННЫЕ КЛЮЧИ Общие сведения. Электронный ключ это устройство, которое может находиться в одном из двух устойчивых состояний: замкнутом или разомкнутом. Переход из одного состояния в другое в

ТЕМА 8 ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ. УСИЛИТЕЛЬ ПОСТОЯННОГО ТОКА В усилителях постоянного тока (УПТ) (частота сигнала единицы и доли герц) применяют непосредственную омическую (гальваническую) связь. Лучшими

Электроника Стабилизация положения рабочей точки усилительного элемента В процессе работы положение рабочей точки усилительного элемента изменяется. Это происходит вследствие действия дестабилизирующих

ЛАБОРАТОРНАЯ РАБОТА ИССЛЕДОВАНИЕ УСИЛИТЕЛЬНОГО КАСКАДА НА БИПОЛЯРНОМ ТРАНЗИСТОРЕ 1. ЦЕЛЬ РАБОТЫ Изучение характеристик, параметров и режимов работы усилительного каскада на биполярном транзисторе, включенном

1 Искажения при детектировании амплитудно-модулированных колебаний Кафедра РЭИС. Доцент Никитин Никита Петрович. 2009 2 Нелинейные искажения при детектировании амплитудномодулированных колебаний Пусть

Мордовский Государственный Университет Имени Н.П.Огарева Институт Физики и Химии Кафедра Радиотехники Бардин В.М. РАДИОПЕРЕДАЮЩИЕ УСТРОЙСТВА УСИЛИТЕЛИ МОЩНОСТИ И ОКОНЕЧНЫЕ КАСКАДЫ РАДИОПЕРЕДАТЧИКОВ. Саранск,

Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный университет имени Франциска Скорины» ОСНОВЫ РАДОЛЕКРОНК ОБУЧАЮЩЕ ЕСЫ Для студентов специальности -3 04 03

58 А. А. Титов УДК 621.375.026 А. А. ТИТОВ ЗАЩИТА ПОЛОСОВЫХ УСИЛИТЕЛЕЙ МОЩНОСТИ ОТ ПЕРЕГРУЗОК И МОДУЛЯЦИЯ АМПЛИТУДЫ МОЩНЫХ СИГНАЛОВ Показано, что биполярный транзистор представляет собой управляемый ограничитель

Раздел 2. Усиление слабых сигналов. Глава 4. Принципы построения усилительных схем 4.1. Схемы подачи питания и стабилизации Постоянные токи и напряжения в цепях УЭ, соответствующие состоянию покоя, т.е.

7. Базовые элементы цифровых интегральных схем. 7.1. Диодно-транзисторная логика Транзисторный каскад, работающий в ключевом режиме, можно рассматривать, как элемент с двумя состояниями, или логический

Лекция номер 10 Схемы преобразователей Никитин Н.П. Классификация схем По типу гетеродина: с отдельным и с совмещённым гетеродином По типу прибора, на котором выполняется смеситель: транзисторные и диодные

109 Лекция ЦЕПИ С ДИОДАМИ И ИХ ПРИМЕНЕНИЕ План 1. Анализ цепей с диодами.. Источники вторичного электропитания. 3. Выпрямители. 4. Сглаживающие фильтры. 5. Стабилизаторы напряжения. 6. Выводы. 1. Анализ

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ) Радиофизический

Задача 1 Определим исходные данные: 1. Начертим схему выпрямителя с фильтром, на которой обозначим напряжения и токи в обмотках трансформатора, вентилях и нагрузке. Укажем полярность выходных клемм. 2.

Основным назначением выходного каскада является передача в нагрузку максимальной и необходимой мощности, близкой к предельной для данного типа транзистора, при наименьшем потреблении мощности от источника питания и допустимых уровнях искажений.

Поэтому выходной каскад это каскад мощности. Основными показателями такого каскада являются:

· Отдаваемая в нагрузку мощность,

· Уровень нелинейных искажений и допустимая частота пропускания.

Нелинейные искажения и К.П.Д. зависят от начальной точки покоя транзистора. Поэтому важным при выборе выходного каскада является режима работы. При больших сигналах нелинейные искажения могут возникать как из-за нелинейности входных, так и выходных характеристик транзисторов.

Основываясь на проведенных рассуждениях можно, по выходным характеристикам транзисторов рис. 4.1. показать, что усилители могут быть трех классов

1. А - точка покоя выбирается такой, что при движении по линии нагрузки она не выходит ни в одну нелинейную зону.

2. В - точка покоя находится в крайнем правом положении на характеристике I б =0. Таким образом, такой усилитель усиливает только одну полуволну входного сигнала. Как правило, такие усилители работают по двухтактной схеме.

3. АВ - Промежуточный класс, он позволяет снизить нелинейность, но не устраняет ее полностью.

При жестких требованиях к нелинейным искажениям выходные каскады работают в классе А. Высокий К.П.Д. можно получить в классах В, АВ.

Как правило, выходное сопротивление усилителей мощности велико, а сопротивление нагрузки мало и поэтому в каскадах используется трансформаторная связь, что позволяет получить высокие значения неискаженной мощности.

При трансформаторном включении нагрузки постоянная составляющая выходного тока не протекает через нагрузку, что уменьшает расход потребляемой мощности питания и повышает К.П.Д.

Рис.2.34. Выходные характеристики усилителя мощности.

Усилители класса А

Такие усилители предназначены для получения определенной мощности на нагрузке. В таких усилителях применяется трансформаторная связь с нагрузкой рис 2.35. При трансформаторном включении нагрузки постоянная составляющая выходного тока не протекает через нагрузку, что уменьшает расход потребляемой мощности питания и повышает К.П.Д.

Режим покоя (U вх=0). За счет смещения появляются токи: I бп. , I кп = βI бп +(1+β)I кбо

Если трансформатор идеален, сопротивление первичной обмотки трансформатора постоянному току равно нулю и U кп = Е к

При U вх >0 появляется приращение ΔI б, ΔI к = βΔI б. Нагрузкой является:

R н / =R н ω 1 2 /ω 2 2 . Как было сказано раннее, необходимым параметром является К.П.Д.



где

Рис.2.35 Однотактный усилитель мощности.

Рис.2.36. Зависимости η = f (ξ), Р к =f(ξ), для усилителя класса А

На основе полученных кривых можно сделать выводы:

1. К.П.Д. - мах значение получается при значительном входном сигнале.

2. Мощность, потребляемая от источника, не зависит от величины входного сигнала.

3. Мах значение мощности потерь получаем в режиме покоя.

Такие усилители предназначены для передачи двухполярных сигналов. При этом они обладают рядом недостатков:

· Низкий К.П.Д ., особенно при малом входном сигнале,

· Р о не зависит от входного сигнала и в режиме покоя расходуется впустую,

· Наличие трансформатора определяет неблагоприятный характер частотных характеристик,

· Невозможност ь передачи однополярных сигналов

Усилители класса В

В таких усилителях нагрузка включается непосредственно в коллекторную цепь

рис 2.37. В режиме покоя, когда u вх = 0, смещение на базу транзистора не подается и

I кп = 0, Р н = 0, т.е. нагрева транзистора в режиме покоя нет. При подачи на базу положительного входного сигнала ток коллектора увеличивается, появляется падение напряжения на коллекторном сопротивлении. При отрицательном сигнале выходное напряжение равно нулю, т.е. такой усилитель, может усиливать сигналы одной полярности. Это исключает применение трансформатора для связи с нагрузкой.

Рис.2.37. Однотактный усилитель класа В

Определим К.П.Д. каскада для случая указанного сигнала. Мощность, отдаваемую в нагрузку определим с учетом того, что в данном случае действующее значение U вых =U выхм

/R н =

Мощность, потребляемая от источника, зависит от среднего тока, протекающего через нагрузку
ξЕ к 2 /R н

Получаем К.П.Д ή=ξ

Из рассмотренных кривых рис. 2.37. можно сделать следующие выводы:

· К.П.Д. каскада класса В выше, чем в схеме рис. 2.36, особенно при малых и средних сигналов u вх.

· Мощность, потребляемая от источника Е к, минимальна в режиме покоя и увеличивается при росте u вх.

· Мощность потерь максимально при средних значениях ξ, но намного меньше, чем максимальная мощность потерь в схеме 2.36. При малых ξ, Р к мала, так как малы токи через транзистор, при больших ξ Р к также мала, поскольку падение напряжения на нагрузке велико, а падение напряжения на транзисторе u k = E k – u вых. мало.

Все сказанное позволяет сделать вывод, что усилители класса В имеют преимущества перед каскадами класса А. Невозможность усиления двухполярных сигналов преодолена в двухтактном усилителе мощности.

Двухтактный каскад усилителя мощности класса В

Один из возможных вариантов такого усилителя приведен на рис.2.38

В режиме покоя оба транзистора заперты. При подачи положительного входного сигнала u вх. увеличивается ток i к1 п-р-п транзистора V 1 . Схеме работает так же, как каскад на рис. 4.4 транзистор V 2 заперт

Рис 2.38. Двухтактный усилитель мощности класса В.

При напряжении отрицательной полярности заперт транзистор V 1 , ток i к2 р-п-р транзистора V 2 , протекающий через нагрузку, увеличивается. Таким образом, транзисторы вступают в работу поочередно в зависимости от полярности усиливаемого сигнала. К запертому транзистору прикладывается напряжение u k = E k + u вых. , которое в пределе при больших ξ стремится к 2Е к, что необходимо учесть при выборе транзистора

Выбираем структурную схему усилителя мощности. Она представлена на рисунке 2. Входной каскад выполнен на транзисторе VT1 , включенный с общим эмиттером. Резистор R4 является нагрузкой первого каскада усиления. С него усиленный сигнал поступает на базу транзистора VT2 , являющимся промежуточным каскадом усиления. Выходной каскад собран на биполярных транзисторах VT7 VT10 по схеме Дарлингтона. Таким образом, усилитель мощности является трёхкаскадным. Составим примерную схему будущего усилителя мощности:

Рисунок 2 - Ориентировочная схема УМЗЧ

Максимальное напряжение на выходе и максимальный выходной ток рассчитываются по выходной мощности PL = 5 Вт. и сопротивлению нагрузки RL = 4 Ом.

Выходной каскад

Традиционно работу и расчёт усилителя мощности начинают рассматривать с выходного каскада, так как от схемы выходного каскада существенно зависят многие параметры УМЗЧ такие как: энергетические показатели, нелинейные искажения, надёжность и т.д. Выходной каскад представляет собой эмиттерный повторитель на комплементарных транзисторах, включённых по схеме Дарлингтона. В этом каскаде нагрузка подключается к коллекторам выходных транзисторов. Выходной каскад УМЗЧ представлен на рисунке 3.


Рисунок 3 - Выходной каскад УМЗЧ

Необходимое напряжение питание усилителя мощности найдём, исходя из формулы мощности:

Из получившейся пропорции находим:

При найдём ;

Выберем напряжение питания немного больше, учитывая погрешности при расчете и потери мощности питания на входном и промежуточном каскадах. Примем

Выходной каскад служит усилителем тока и в общем виде может рассматриваться как преобразователь импедансов, согласующий низкоомный выход каскада с нагрузочным сопротивлением.

Мощность выходных каскадов лежит обычно в пределах от 50мВт. до 100Вт. И более, поэтому при расчете усилителей всегда следует учитывать рассеиваемую транзисторами мощность.

Напряжение пробоя выходных транзисторов VT 8 и VT 10 должно быть:

Максимальная мощность рассеяния транзисторов VT 8 и VT 10 при активной нагрузке и гармоническом сигнале на входе равно:

Ток короткого замыкания выходных транзисторов равен:

Таким образом, при известных значениях параметров по справочным данным выбираем комплементарную пару выходных транзисторов: VT 8 - КТ 816В, VT 10 - КТ 817В.

По максимальному выходному току Imax и минимальному усилению по току B0 = 25, выбранного типа транзисторов VT 8 и VT 10, рассчитываем ток коллектора транзисторов VT 7 и VT 9:

Такому коллекторному току соответствует маломощный кремниевый транзистор КТ 3102Б - структуры n-p-n и маломощный кремниевый транзистор КТ 3107Б - структуры p-n-p .

В качестве транзистора VT 2 (транзистора промежуточного каскада) можно использовать практически любой маломощный низкочастотный транзистор. Следует только обратить внимание на предельное напряжение коллектор-эмиттер, которое не должно быть меньше, чем. Такому напряжению соответствует транзистор типа КТ 3107Б у которого максимальное напряжение коллектор-эмиттер равняется 45В.

Перейдём к рассмотрению и расчёту защиты от токовой перегрузки и короткого замыкания выхода. Из-за малого выходного сопротивления усилитель мощности легко может быть перегружен по току нагрузки и выведен из строя за счёт перегрева выходных транзисторов. Конструктивные меры повышения надёжности, такие как выбор транзисторов с большим запасом по мощности рассеяния, увеличение площади теплоотводящей поверхности, приводят к удорожанию конструкции и ухудшению её массогабаритных показателей. Поэтому целесообразно использовать схемотехнические способы повышения надёжности, вводя в усилитель мощности цепи защиты от токовых перегрузок и коротких замыканий выхода.

Рассмотрим принцип действия защиты выходного каскада УМЗЧ от токовой перегрузки и короткого замыкания выхода. Схема защиты состоит из транзисторов VT 5 и VT 6 и резисторов R 10…R 13. Схема защиты представлена на рисунке 4. Работает цепь защиты следующим образом.

При достаточно малом токе нагрузки транзистор VT 5 заперт, так как падение напряжения на резисторе R 11 недостаточно для его открывания, и цепь защиты практически не оказывает влияния на работу усилителя мощности. При увеличении тока нагрузки растёт падение напряжения на резисторе R 11 (для положительной полуволны; для отрицательной полуволны выходного напряжения будет увеличиваться падение напряжения на резисторе R 12). При достижении напряжения падающего на резисторе R 11, порога UБЭ ПОР открывания транзистора VT 5 он отпирается, забирая на себя часть тока источника, тем самым стабилизируя максимальный ток нагрузки. Номиналы резисторов R11 и R12 рассчитаем по формуле:

Резисторы R 11 и R 13 имеют малое сопротивление (100…150 Ом) и служат для ограничения тока базы транзисторов VT 11 VT 13. Резисторы R 11 и R 13 практически не влияют на работу цепи защиты.

Рисунок 4 - Схема защиты выходного каскада УМЗЧ от токовой перегрузки и короткого замыкания выхода.

Далее перейдем к рассмотрению схемы температурной стабильности тока покоя выходного каскада УМЗЧ. Существует достаточно много различных схемотехнических приёмов обеспечения температурной стабильности тока покоя выходных транзисторов. Все они в конечном счете требуют создания теплового контакта элементов стабилизирующей цепи либо с корпусом транзисторов, либо с теплоотводящей поверхностью. Еще один пример построения выходного каскада усилителя мощности с температурной стабилизацией тока покоя выходных транзисторов приведен на рисунке 4. Преимущество данного способа заключается в том, что на теплоотводящую поверхность помещается только один термочувствительный элемент - транзистор VT 4. Условие, из которого выбирают номиналы резисторов R 6 и R 8:

В общем случае отношение должно быть численно на единицу меньше количества p-n переходов в контуре. Резистор R 8 выполняется переменным для обеспечения установки требуемого тока покоя транзисторов выходного каскада усилителя мощности. Выберем номиналы сопротивлений R 6 и R 8, учитывая, что их отношение должно быть примерно равняться трём, так в выходном каскаде стоят четыре транзистора (т.е. имеется четыре p-n перехода). Возьмём сопротивление R 6 равным 1000 Ом, тогда R 8 будет равным:

Для расчёта резистора R7, воспользуемся выражением:

рассчитаем R 7.



Понравилась статья? Поделитесь с друзьями!